Real-time emotion recognition: Novel method for geometrical facial features extraction
- Post by: System
- 27 November 2019
- Comments off
Facial emotions provide an essential source of information commonly used in human communication. For humans, their recognition is automatic and is done exploiting the real-time variations of facial features. However, the replication of this natural process using computer vision systems is still a challenge, since automation and real-time system requirements are compromised in order to achieve an accurate emotion detection. In this work, we propose and validate a novel methodology for facial features extraction to automatically recognize facial emotions, achieving an accurate degree of detection. This methodology uses a real-time face tracker output to define and extract two new types of features: eccentricity and linear features. Then, the features are used to train a machine learning classifier. As result, we obtain a processing pipeline that allows classification of the six basic Ekman’s emotions (plus Contemptuous and Neutral) in real-time, not requiring any manual intervention or prior information of facial traits. Copyright © 2014 SCITEPRESS – Science and Technology Publications. All rights reserved.