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Synonyms

Body extender; Exoskeletal robots; Exoskele-
tons; Human amplifying robot; Powered
exoskeletal harness; Powered orthoses; Pros-
thesis; Prosthetic robot

Definition

Wearable robots are advanced human symbiotic
robotic systems characterized by suitable shape,
kinematic, and weight factors to be worn on the
human body with the function of either aug-
menting and assisting (exoskeletons) or restoring
human limb function (prosthetic robots) (Pons
2008).

When they are shaped in the form of powered
orthoses, they are typically called exoskeletons,
where in biology the term exoskeleton (“exo-”
prefix stands for outer) is used to refer to the
outer structure protecting insects body, so that
in analogy exoskeletons are robotic structures
that can be put on existing limbs. When they
substitute a missing human limb, they are called
prosthetic robots.

Overview

Human beings have always pursued the dream of
enforcing human capabilities through the usage
of wearable devices.

If we consider prostheses, the earliest records
date back to 77 AD when Roman scholar, Pliny
the Elder, described how, Marcus Sergius, a
Roman general, after losing a hand in war,
received a prosthesis that enabled him to return
successfully to battle (Zuo and Olson 2014), but
in the early 1900s, Giuliano Vanghetti was the
first scientist to propose an invasive prosthesis
directly connecting to the internal dynamics of
the arm to generate movement, i.e., the prosthesis
was directly linked with muscular and tendinous
loops (Tropea et al. 2017).

To date the first example of wearable robot
for empowering human strength was made
in the 1970s by General Electric, with the
Hardiman project, aiming at implementing a
full body extender to enforce human capabilities
(Makinson et al. 1969) (see Fig. 1a). At that
time, the exoskeleton was based on hydraulic
actuation with already implemented a bilateral
(force reflecting) controller, but unfortunately the
project was discontinued for safety issues.

The first robotic exoskeletons were then built
for needs in the area of teleoperation and space
applications (Bergamasco et al. 1994), in the
context of bilateral teleoperation. The sector of
exoskeletons received a great impetus and boost
in the twenty-first century from Darpa exoskele-
ton research program to support the development
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Wearable Robots, Fig. 1 Examples of human amplifiers exoskeletons, image credits (b) prof. Massimo Bergamasco,
Scuola Superiore Sant’Anna, (c) Sarcos Inc.

of soldier amplification capabilities, and then it
subsequently raised up an increasing interest in
the medical sector with the development of active
lower limb exoskeletons for walking assistance in
spinal cord injury and upper limb exoskeletons
for stroke rehabilitation.

Applications

Wearable robots have found so far their
application in a large variety of tasks, ranging
from rehabilitation and assistance up to human
power augmentation. According to the field
of application and their features, we can
distinguish between powered exoskeletons,
upper limb exoskeletons (ULEs) and lower limb
exoskeletons (LLEs), and robotic prostheses for
limb replacement.

Exoskeletons
Full body exoskeletons can be used for
human power augmentation, in order to
increase human capability in the execution
of heavy duty tasks, ranging from amplifying
machines capable of lifting loads up to

100 kg (Marcheschi et al. 2011) to lower limb
exoskeletons that can provide support to soldiers
during long-distance walks, e.g., Fig. 2c.

A wider category of exoskeletons have been
proposed for the reduction of fatigue during the
execution of low duty tasks in the industry, e.g.,
highly repetitive handling of loads up to 20 kg,
to prevent the onset of injury at the level of the
muscle-skeletal system, for instance, by safely
transferring the loads from upper limbs to the
trunk or the legs. The assistance can be also
provided at level of single articulation only, e.g.,
to relieve fatigue during walking with hip, knee,
or ankle “exo-modules”: recently it has been
validated how walking effort, measured in terms
of metabolic consumption, is reduced by the
adoption of powered ankle push-off (Caputo and
Collins 2014).

In the medical domain, exoskeletons are
applied both for rehabilitation and training
in neuromotor rehabilitation, i.e., ULEs for
rehabilitation after stroke (Frisoli 2018) or LLEs
for assistance to paraplegia after spinal cord
injury (Donati et al. 2016). Soft ULEs (Chiaradia
et al. 2018) and LLEs (Wehner et al. 2013) have
also been proposed as solutions for regain and
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Wearable Robots, Fig. 2 Some examples of ULEs and
LLEs. (a) The Alex exoskeleton (Pirondini et al. 2016).
(b) CADEN-7 exoskeleton (Perry et al. 2007). (c) Hulc

Exoskeleton (Zoss et al. 2006). (d) Nasa X1 Exoskeleton
(Rea et al. 2013)

amplification of human strength or rehabilitation
training, while selective rehabilitation training
can be performed with hand or finger assistive
devices (Leonardis et al. 2015; Sarac et al. 2017)

Prosthetic Robots
An “ideal” satisfactory prosthetic robot should be
easy to control, comfortable to wear with good
body interface and correct weight inertia, and
biocompatible (Lai et al. 2007). The challenge

in the design of prosthetic robots relies so in the
high level of integration with the human body that
needs to be achieved, so that while exoskeletons
work in parallel with human body, prosthetic
wearable robots operate mechanically in series
(Pons 2008). Bioinspiration and biomimetics are
two common design principles used to fulfill the
above requirements.

In the field of lower limb prostheses (LLPs),
the design features of wearable robotic legs are



4 Wearable Robots

derived from study of neuromechanical models of
human locomotory function to achieve robots that
move like, and feel like, their biological counter-
parts (Bergamasco and Herr 2016). For instance,
it is well known that during walking cycle, human
ankle is varying its impedance, so a biomimetic
actuator architecture should be designed to match
similar biologic levels of powered plantar flexion
at the ankle. Current prosthetic designs make
use of series and parallel elastic actuation for
power amplification in order to reduce the cost of
transport (COT) and to improve the comfort and
performance of walking (Fig. 3).

Key Research Findings

Exoskeletons
One peculiar feature of exoskeletons is that they
act in symbiosis with the human operator, being

able to follow his/her intention of movement.
This poses specific requirements at the level of
control, actuation, and kinematics.

Control
In order to be able to provide high-fidelity force
feedback and unperturbed movement of the
human upper extremity, exoskeleton actuation
systems should be designed to maximize their
Z-width as it happens with haptic devices
(Colgate and Brown 1994), which implies a
control bandwidth higher than human reaction
time to prevent instability during human-in-the-
loop control.

Based on the adopted actuation and control,
robotics exoskeletons can be classified as
impedance-based design (open-loop or force
closed-loop control impedance control) or
admittance-based design (admittance control
with position feedback).

Wearable Robots, Fig. 3 Example of ULP and LLP prosthetic robots. (a) Soft hand (Catalano et al. 2014). (b) Biom
by IWalk (Blaya and Herr 2004). (c) Cyber hand (Zollo et al. 2007)
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Kinematic Compatibility
In order to assist human motion, exoskeletons
should be accurately designed from an ergonomic
and biomechanical point of view. In particular
since the real anatomy of human joints does not
correspond to ideal rotational or spherical joints,
axes misalignment can lead to undesired inter-
action loads (UI loads) that can render wearable
robots uncomfortable (Jarrasse and Morel 2012).
Exoskeletons need to have either appropriate size
adjustment mechanisms to fit with human in-
dividual dimensions or to be endowed with a
number of passive joints in the kinematic chain
connecting the robot links with the human limbs.
The number of passive dofs can be computed
considering that the number of degree of freedom
F is constrained by the formula (Li et al. 2017)
F = factive + fhuman + fpassive − dl, where f

indicates the number of dof for active, passive,
and human arm joints, l is the number of kine-
matic loops, and d = 6 for spatial kinematics.

Actuation
In terms of actuation, exoskeletons built for reha-
bilitation, and human power augmentation make
use of different actuation solutions, as outlined in
Fig. 4.

As far as powered exoskeletons, both Berkeley
Lower Extremity Exoskeleton (BLEEX)

(Zoss et al. 2006) and the XOS exoskeleton
(Sarcos Research Corporation Inc., USA ) are
based on hydraulic actuation systems, with
control algorithms based on force measurements
for a smooth control of exoskeleton movement,
while both Robot Suit HAL (Kasaoka and Sankai
2001) and the Body Extender (Marcheschi et al.
2011) make use of electrical motors.

ULEs for medical applications have been
mainly built with pneumatic actuation (Kousidou
et al. 2007; Sanchez et al. 2005) and electrical
actuation for safety issues. Electrical actuators
might differ for the adoption of geared drive
solutions (Nef and Riener 2005), joint torque
controlled actuators by force closed-loop control
(Vertechy et al. 2009), tendon drive (Perry et al.
2007; Ruffaldi et al. 2014; Frisoli et al. 2005),
or mixed designs where a combination of ball
screws and cable is used (Garrec et al. 2008).

As for LLEs, the most represented class
among the walking assistive orthoses for the
paraplegics is the “mechanically assisted body
position controlled” exoskeletons, to which
belong the Ekso (by Ekso Bionics) derived
from E-legs (Strausser and Kazerooni 2011);
the Indego, descending from the Vanderbilt HK
orthosis (Quintero et al. 2011); and the Rewalk
(Argo Medical Technologies Inc).

Wearable Robots, Fig. 4 Main actuator solutions
adopted for ULEs and LLEs, from left to right Armin
(Nef and Riener 2005), Indego (Quintero et al. 2011),
Alex 3 (Ruffaldi et al. 2014), Caden-7 (Perry et al. 2007),

Symbitron exoskeleton (van der Kooij et al. 2017), NEU-
ROExos (Lenzi et al. 2011), Rehab-Exos (Vertechy et al.
2009), Pneu-Wrex (Sanchez et al. 2005)
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Alternatively soft exoskeletons make use of
actuation principles that can be either embedded
in garments (Cappello et al. 2016), e.g., sheathed
tendons, or in deformable structures (Polygerinos
et al. 2015), e.g., pneumatic inflatable structures,
with a consequent reduction of weight of moving
parts and a distributed actuation concept.

On the other side in the context of research,
other exoskeleton designs have been proposed
based on VSA (Variable Stiffness Actuators)
actuators, or more generally VIA (Variable
Impedance Actuators). However the usage of
VSA is quite limited for issues of portability,
since each actuated joint requires two motors to
control both stiffness and motion; one example
is the NEUROExos (Lenzi et al. 2011). Series
elastic actuation (SEA), where an electric motor
is coupled with a spring with fixed stiffness,
is much more used since they allow to achieve
a precise control of joint torque. The LOPES
exoskeleton (Veneman et al. 2007) has been the
first exoskeleton using serial elastic actuation
and then adopted later also in Symbitron LLE
(van der Kooij et al. 2017) and other designs.

Prostheses
In the field of upper limb prostheses (ULPs),
significant advances have been achieved both in
terms of design and control. Underactuation has
been adopted in prosthetic hands as an approach
to simplification of complexity in design and
control (Zollo et al. 2007; Cabas and Balaguer
2005), where basically a differential transmission
is associated to control multiple joints with one
single actuator, typically implemented by means
of a cable routed over a set of joint idler pulleys
at joints. More recently the soft hand (Catalano
et al. 2014) has reduced the dimensionality of the
grasping problem by combining underaction with
soft motion synergies, i.e., primitive of human
movements derived from human grasping obser-
vation in manipulation tasks. As far as control,
since the 1950s, the surface EMG has been tradi-
tionally the main biometric signal for control of
multifunction upper limb prosthesis in practical
use (Jiang et al. 2012). Nowadays both targeted
muscle reinnervation, e.g., the rerouting of resid-
ual nerves of the amputees over the chest muscles

transforming them into a “biological signal am-
plifier” (Farina et al. 2014), and neuroprostheses,
i.e., neural interfaces for the peripheral nervous
systems (Raspopovic et al. 2014), have been
successfully used to allow amputees to control
multi-dof hand prostheses.

Future Directions

Wearable robotics is an emerging and rapidly
growing research field. Several new lines
of research are stemming out to overcome
current limitations of existing robots, and
future directions are concerned with energy
harvesting and high-density power storage
for power generation for wearable robots,
innovative human-robot interfaces for intuitive
control with integrated sensory feedback,
and advanced ergonomic designs for human
symbiotic exoskeletons.

Brain-computer interfaces and electromyo-
graphic (EMG) signals have already been
successfully used as noninvasive biometric
measurements to trigger the initiation and control
of movement in wearable robots in rehabilitation
training (Frisoli et al. 2012), and future directions
involve high-density EMG arrays and the
application of motor synergies concept to reduce
the dimensionality control problem.

Also the sensory feedback to amputees
wearing prosthetic limbs or to paraplegics
wearing exoskeletons is being investigated
through sensory substitution, i.e., by providing
suitable vibrotactile or more in general haptic
stimulations to a different part of the body.
Future research will be focused on completely
implantable and long-term electronic system
that by making use of intraneural electrodes,
no larger than a human hair, can enable the motor
signals sent by the brain to be transmitted to the
robotic prosthesis and vice versa (Raspopovic
et al. 2014).

In the field of LLEs for gait assistance, a
strong limitation of existing systems is typically
represented by the lack of self-balancing
dynamic skills, which requires the patient to
rely on crutches for maintaining the equilibrium.
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The recent advances in the control of biped
locomotion in humanoid robots will bring
important results to achieve smooth dynamics
balance control in exoskeletons as well.

Cross-References

�Haptics and Haptic Interfaces
�Human-Robot Collaboration
� Prosthesis Robotics
�Telerobotics
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